Domino Fibonacci Tableaux
نویسندگان
چکیده
In 2001, Shimozono and White gave a description of the domino Schensted algorithm of Barbasch, Vogan, Garfinkle and van Leeuwen with the “color-to-spin” property, that is, the property that the total color of the permutation equals the sum of the spins of the domino tableaux. In this paper, we describe the poset of domino Fibonacci shapes, an isomorphic equivalent to Stanley’s Fibonacci lattice Z(2), and define domino Fibonacci tableaux. We give an insertion algorithm which takes colored permutations to pairs of tableaux (P,Q) of domino Fibonacci shape. We then define a notion of spin for domino Fibonacci tableaux for which the insertion algorithm preserves the color-to-spin property. In addition, we give an evacuation algorithm for standard domino Fibonacci tableaux which relates the pairs of tableaux obtained from the domino insertion algorithm to the pairs of tableaux obtained from Fomin’s growth diagrams.
منابع مشابه
ar X iv : 0 70 9 . 09 71 v 1 [ m at h . C O ] 6 S ep 2 00 7 k - RIBBON FIBONACCI TABLEAUX
We extend the notion of k-ribbon tableaux to the Fibonacci lattice, a differential poset defined by R. Stanley in 1975. Using this notion, we describe an insertion algorithm that takes k-colored permutations to pairs of k-ribbon Fibonacci tableaux of the same shape, and we demonstrate a colorto-spin property, similar to that described by Shimozono and White for ribbon tableaux. We give an evacu...
متن کاملEvacuation and a geometric construction for Fibonacci tableaux
Tableaux have long been used to study combinatorial properties of permutations and multiset permutations. Discovered independently by Robinson and Schensted and generalized by Knuth, the Robinson-Schensted correspondence has provided a fundamental tool for relating permutations to tableaux. In 1963, Schützenberger defined a process called evacuation on standard tableaux which gives a relationsh...
متن کاملq - al g / 97 09 01 0 v 2 15 S ep 1 99 7 DOMINO TABLEAUX , SCH
We deene an action of the symmetric group S n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight 0 does not depend on the permutation of the weight 0. A bijective proof of the well-known result due to J. Stembridge that the number of self{evacuating tableaux of a given shape and weight = (1 ; : : : ; n+1 2 ] ; n 2 ] ; : : : ; 1), is equal to that of domino...
متن کاملar X iv : q - a lg / 9 70 90 10 v 1 4 S ep 1 99 7 August 7 , 1997 DOMINO TABLEAUX , SCHÜTZENBERGER INVOLUTION , AND THE SYMMETRIC GROUP ACTION
We define an action of the symmetric group S[ n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight β does not depend on the permutation of the weight β. A bijective proof of the well-known result due to J. Stembridge that the number of self–evacuating tableaux of a given shape and weight β = (β1, . . . , β[ n+1 2 ], β[ n2 ], . . . , β1), is equal to that o...
متن کاملDomino tableaux, Schützenberger involution, and the symmetric group action
We define an action of the symmetric group S[ n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight β does not depend on the permutation of the weight β. A bijective proof of the well-known result due to J. Stembridge that the number of self–evacuating tableaux of a given shape and weight β = (β1, . . . , β[ n+1 2 ], β[ n2 ], . . . , β1), is equal to that o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006